
. .

SP/E’s International Symposium on optical Engineering in .Aerospace Sensing,
Space Guidance, Control, and Tracking Conference, Paper No, 2221-04,
Oriando, FL, April 4-8, 1994.

Realization of autonomous image-based spacecraft pointing systems :
planetary flyby example

I Cheng-Chih Chu, David Q. Zhu, Suraphol Udomkesmalee, and Marc I . Pomeran t z

Jet Pr’opukion Laboratory
California Institute of Technology

MS 198-326
Pasadena, CA 91109

ABSTRACT

With a new NASA direction to provide space missions that are low-cost, versatile, and yield maximum science return,
future planetary exploration will be accomplished by small spacecraft with a minimum number of components to
minimize development and operational costs. This h= generated a great deal of interest in the development of
autonomous spacecraft technology for these future missions. One of the key research area is the development of an
autonomous image-b=d spacecraft pointing systems where the target position must be measured and estimated on-
board. By analyzing image data on-board and using it to update the target estimate, the efficiency of the system will
be,greatly improved. In cases of a brief planetary encounter and other asteroid/comet investigation missions, on-board
closed loop processing will be essential for maximizing the science return.

I This paper summarizes our efforts towards the realization of an intelligent autonomous tracking and pointing system
for space applications. A powerful 3D graphic software testbed has also been developed to simulate a likely scenario

I of autonomous tracking and pointing operations during a planetary flyby mission.

I 1. INTRODUCTION

An essential ingredient in the array of new GN&C technologies supporting mission operations autonomy is the ability
to identify, classify, and select planetary and celestial features [1]. The interactive functions of autonomous optical
navigation and target referenced maneuver guidance and instrument pointing for science remote sensing/imaging will
all depend on the development of this capability in both hardware and software. This approach is new to spacecraft
target acquisition and image sequence control. Typically, detailed operations such as mosaicking, slewing, and new
target acquisition, limb tracking, raciter scanning, and ground track image motion compensation are up-linked to the
spacecraft after extensive ground sequence planning and design.

Uncertainties in ephemerides, communications and telemetry analysis time delay, and the inability to respond to
unpredictable target opportunities (active sulfur volcanos on Io are the archetypical example of this encountered by
the Voyager spacecraft) are some of the issues limiting mission return that we face today. Moreover, for missions in
which the fly-by time is on the order of the round trip light time, on-board closed loop target tracking is essential to
a-ssuring successful science return.

A new paradigm for the development autonomous feature-based s~,acecraft pointing systems was proposed and de-
scribed in great details in [1]. At JPL, development is underway to realize such a tracking and pointing system. The

1

1

proposed system will be capable of autonomously selecting and classifying planetary and celestial features and updat-
ing attitude and guidance references such % body centroids, limb edges, terminators, craters, and other landmarks,
The research has been focusing on tracking system architecture, data processing method, development of vision-based
algorithms, and the creation of a high-level pointing command language. Progress in this area during the past few years
includes an establishment of processing requirements for autonomous image-based pointing systems, and solutions for
acquiring/tracking spherical bodies in a fast flyby scenario.

A typical target acquisition/tracking sequence for a planetary flyby mission based on images obtained from a camera
field of view consists of the following elements.

1.

2.

3.

Distant Encounter :

Single and/or multiple celestial bodies (e.g. the planet and its moon(s)) {inquisition and tracking. Here the
center of m=s (CM) of the planet can be used as pointing reference and target-relative position measurement
f o r s p a c e c r a f t a t t i t u d e c o n t r o l a n d n a v i g a t i o n ,

Near Encounter :

Limb feature extraction for estimating the object size (radius) and spacecraft position. Differentiation of limb .
from terminator can be done without an a priori Sun position knowledge by examining the edge strength of the
object image.

Close Encounter:

Autonomous mosaicking of the object activated by having the estimated radius exceeding a threshold computed
for a desired N x A4 mosaic of the entire planet. Continuous center of mass updates based on visible limb feature
also enhance pointing performance and ensure optimal area coverage. Feature extraction and tracking may also
be required to obtain necessary target-relative positional information.

In this paper, our efforts in the development of robust, automated, and efficient image processing algorithms for
autonomous tracking are presented. All the algorithms developed have been tested extensively based on Voyager
image data. Some of test results are shown in this paper. To demonstrate our approach towards the realization of
an autonomous image-based tracking and pointing system, a 3D graphic sc)ftware package is developed” to assist the
understanding of the likely scenario of autonomous tracking and pointing operations during a planetary flyby mission.
The tracking software was successfully demonstrated on a simulated Pluto flyby example.

The rest of this paper is organized as follows. Section 2 discusses relevant image processing techniques needed for
autonomous tracking where noise suppression, limb points detection, and least-squares curve fitting for circle and
quadratic curves are discussed. In Section 3, some preliminary results for feature detection and tracking are presented,
including Hough transform, correlation tracking, and tracking by multiple contour matching.

In Section 4, a representative Pluto Fat Flyby mission scenario is chosen to illustrate the autonomous pointing/tracking
technology. In particular, a visualization software was developed on an SG1 graphics workstation. The integration of
tracking and visualization software provides a powerful graphical demonstration C)IL the realization of an autonomous
image-base’d point/tracking technology for space systems. Finally, some of future works are described.

2. IMAGE PROCESSING TECHNIQUES FOR SPACE APPLICATIONS

The maturity in analytical work as well as the advances in computational algorithms in image processing and computer
vision provides us a unique opportunity to apply these concepts to automating the process of obtaining science
images during space exploration missions, especially when one considers the radiornetric/geometric simplicity of space
environments (e.g., dark background,
comparisons to earth environments.

point sources for stars, circular planet bodies, sp-arse space targets, etc.) in

2

To support the development of an intelligent autonomous image-based trackirvg and pointing system, a great deal of our
efforts has been focused on selecting and testing appropriate algc)rithrns for our applications (i.e., space images). Our
major emphasis on the selection of algorithms hm been focused on automated processing, robustness, and efficiency.
For each area, literature survey is usually conducted first to select the candidate algorithms. To aid selection process
further, these candidate algorithms are then implemented and tested in a dedicated, X-window based, image processing
software system developed by the Autonomous Feature And Star l’racking (A F.WI) project at J PL. The testing is
conducted based on the criteria stated above using the vast volume of raw data from Voyager’s image library. In many
cx+es, modifications to the original algorithms are carried out to improve their performance. In this following, several
important areas in image processing relevant to our applications will be discussed and some test results will also be
presented.

2.1 Noise suppression

In any image processing application, pre-proce=ing of raw image data is normally required due to the presence of
noises or backgrounds. For the “salt-and-pepper” type of noises such as those caused by high energy particles, median
filtering is a highly effective method for noise suppression. Other type of low paw filters such as neighborhood averaging
would smear the noise and blur the image and consequently prevent accurate extraction of edges [2]. However, median
filtering could be computationally intensive. A straightforward im~,lementation of the median filter on an image of
size m x n with filter kernel size k x k requires (m — k) . (n — k) median search on a k x k array.

In [3], an efficient method was introduced to eliminate redundancy. A floating histogram is maintained to take
advantage of the fact that pixel intensity is an one-byte integer. The histogram of the neighborhood of the very first
pixel is determined which is then updated for the next pixel on the same row by removing the leftmost old column
and inserting the new column. When index moves to the next column, the histogram is updated by removing and
inserting appropriate rows. The merit of this approach is that the cc)mputation only increases linearly with the kernel
size. (It is possible to optimize a median filter for a particular kernel size.) Similar scheme can be used to implement
neighborhood average filter (convolution with a constant kernel) and max-min type of filters (used in edge detection).
Details of this fast algorithm can be found in [3].

I
Figure 2 shows the result of a 5x5 median filtering on a noisy image of Miranda (moon of Uranus) as shown in Figure 1.
On a SPARCstation 10/30, it takes 4 seconds approximately to perfcmm a 5x5 median filtering on a 800x800 greyscale
image.

2.2 Boundary points extraction (limb detection)

I For celestial images, typically, there is a clear separation of the background (the universe) and the object (planets).
This corresponds to two well discernible peaks on the intensity histogram of the image and the valley (local minimum)
is an appropriate threshold value for segmentation.

For smooth data, the local minimum can be located by differentiatitlg the data (that is numerical differentiation) and
searching for zero crossings. However, too many spurious zero crossings will be generated due to noisy data. In [4], a
convolution kernel, combining differentiation and smoothing, was introduced to minimize this problem. The histogram
is convolved with the convolution kernel (through FFT) to generate a peak detection signal from which the valleys
can be found. The algorithm can find multiple valleys by tuning the kernel parameter which adjust the extent of
smoothing. If the kernel parameter is smaller, the data is less smoothed and the possibility of detecting more valleys
increases. In addition, the detected peaks have to be evaluated against some criteria (such as the width of peaks) to
eliminate errors generated by noise.

I
One characteristic of celestial images is that the background is domiliant and the object is small. In this case, the peak
value (in the histogram) corresponding to the object will be small and the valley is not deep enough to be detected
,accurately. The utilization of Laplacian operator has been suggested to increaqe the symmetry of the histogram [5].
Only pixels which have significant Laplacian (e.g. the top 5%) response are histogrammed. Although Laplacian filter

I 3

is known to be sensitive to noises, this problem can
in [6].

Another approach to segmentation is modeling each

be minimized by using the nonlinear Laplace operator proposed

peak in the histogram as a Gaussian and fitting the histogram to
multiple-mode Gaussian. This approach requires non-linear optimization which is sensitive to initial values and may
not converge to the global extremum.

Once the threshold value is found, it can be used to acquire boundary points by scanning for pixels which has intensity
below threshold, and its neighbor has intensity above threshold. To eliminate noise, a continuity check is also performed
to ensure that the pixel is from a step edge. Both horizontal and vertical direction have to be checked.

The boundary points thus acquired are not free from noises and may not belong to one single object. Clustering can
then be applied to group the boundary points and eliminate noise. k’or many applications, the simple nearest neighbor
clustering is sufficient. For digital images, the Euclidean metric is not always the best choice. Instead, city-block

distance or chess-board distance usually works better [7]. Furthernlore, either of these 2 metrics are computationally
more efficient and represents the digital connectivity more naturally. With a specified maximum separation distance
from the nearest neighbor within a group, the algorithm starts from one point and repeatedly extr’acts points whose
distance to one of the points in the cluster is less than the rnaxin]urn distance. This process is carried out until all
points are checked, and then a new cluster is initiated. This algorithm has average complexity 0(n2), where n is total
number of points.

A common difficulty in limb detection on the celestial body is the presence of terminators. In our experience working
with the many Voyager images, the terminator occurred c)n the celestial body (especially the spherical body) can be
typically characterized by a weaker edge (i.e. lower gradient) as compared to the true limb. Therefore, to detect
the limb points in the presence of terminators, a gradient operator (such as Sobcl operator) can be used to estimate
the gradient of an image first. The edge points are then grouped by their gradients and stronger edge points will
be characterized as limb points. This method is intuitively simple but highly effective for the detection of “critical”
boundary points. These extracted limb points will typically be used in estimating important geometric parameters of
the object, such as the center-of-the-mass location and radius of a spherical body,

It is also important to note that this approach depends on image data only. Although it is not required to have the
sun vector information, this method can be made more robust if the sun measurement is available.

2.3 Least-squares curve fitting: circle and quadratic curves

In developing an intelligent autonomous tracking/pointing system for a spherical body, one key element is the capability
to provide continuous update on the center-of-mass location and radius of the targeted object. To fit the extracted
limb points into a circle, one can pose an optimization problem that minimizes the sum of square errors between the
data and the estimates. This is known as the least-squares minimization problem. Although it is a nonlinear problem,
the optimal least-squares solution for a circle fitting problem can actually be sol~’ed in closed form [8]. Define

N - 1

E(a, b,r) = ~[r2 - (~i - a)2 – (yi – b)2]2 ,
i=O

1 are the points to be fitted. “l’he necessary condition for minimization of E(a, b, r) is

VE(a, b,c) = O ,

or

N r2 – Na 2 – Nb 2 + 2 m1 0a + 2mOlb – m20 – rno2 = O

m10r2 - m10a2 - m 10b
2 + 2mz@ + 2mllb – mso – 77112 = O

mOlr2 - mOla2 — m o1b
2 + 2m11a + 2mOzb — m21 — mo3 = O

(1)

(2)

(3)

4

w h e r e m~f = ~z$y~. From (l),

“ r2 = U2 +- 62 – (2mloa +- 2n101fI – rnuo – mo2)/.IV (-1)

By substituting Eq. (4) into Eqs. (2) and (3), the following two linear equations of a and b are obtained

(2m*0 - 2m~o/fV)a + (2mll - 2rn01m10/fV)b =: m30 + mIz - m,Om10/N - rnO,mlO/fV , (5)

(2mll - 2m10m01/N)a + (2mO* - 2m~i/N)b = mzl + ?nos - mzOmO1/N - mo2mol/N . (6)

The center (a, b) and the radius r are completely determined.

Similarly, the least-square fit of general quadratic curve can be solved in closed form as well [9]. In general, the
quadratic curve is described by

Q(z, y)=az2+ bzy+cy2-t& z-t-e y+j=0 .

But direct minimization of the square error E(a, b, C, d, e, f) = ~j~j’l Q2(~i, yi) leads to all coefficients being zero.
One way to avoid this is to force one of the coefficients to be nonzero, e.g. let Q(z, y) = ax2 + bxy + CY2 -t dz + ey + 1.
The minimization condition VE(a, b, c, d, e) = O leads to

I

mqo mal maz mso mal

H! ‘ !

a -mzo
msl mzz rn13 mzl m~z b --roll
mzz mla moq ml~ mos = -mOz
mso mal mla mzo mll ; --mlo
m~ I mla mos mll moz e -- mo 1

A better approach is to define a scattering matrix S = ~fljl VkV~, where Uk = [x; Xkyk y; Zk yk 1]*. S is a
real, semi-positive definite matrix. Let A = [a b c d e f], the matrix A*SA is minimized by choosing .4 to be
the unit eigenvector associated with the smallest eigenvalues.

A special c-e of quadratic curves is an ellipse. The condition for a conic section to be an ellipse is b2 – 4ac <0. The
orientation of the ellipse is given by a = ~ tan– 1 (~). Applying coordinate transforrnation, the regular equation of
an ellipse is obtained:

where

B =

c =
D =

E=
F=

acos2cr +bsin Qcosti+csin2 a

asin2a– bsincrcoscr+ccos2a

dcoscr+e sina

–dcosa+e sina

f.

It is noted that the best estimates of various parameters in either circle or quadratic curve-fit can be found with
very little computation effort. Figure 3 shows the result of fitting a circle to the limb of the object in Figure 2. The
corresponding result for a best elliptical fit is shown in Figure 4.

3. FEATURE DETECTION AND TRACKING

Feature detection and tracking is one of the most interesting and difficult problems in developing an intelligent au-
tonomous imaged-based tracking and pointing system. l)uring a near encounter, it is likely that only a close-up,
frame-filling view of the planet will be available. In this case, a robust on-board feature-based tracking system will
be required to extract necessary target-relative positional information by matching with a model of known surt’ace
features or terrains (e.g., the red spot on Jupiter’s surface). In addition, such on-board capabilities will enable the
spacecraft not only to respond to unpredictable target opportunities (such as active sulfur volcanos on Io), but also to
search for interesting science targets if it is instructed to do so. Therefore, the science return can be greatly enhanced.
In this section, some of our work along this research direction will be discussed and preliminary results will also be
presented.

3.1 Circular feature detection using Hough transform

The Hough transform is knowrr for its robustness, but also for its cc}mputational complexity and large memory usage
in contrast to other approaches (such a-s fuzzy clustering in [10]), The principle of the Hough method is to transform
image points to the parameter space and search for clusters in the parameter space. Unfortunately, the complexity
grows exponentially with the number of parameters. Through careful implementation, the Hough transform is feasible
for detecting lines and circles. A,n excellent summary of all the techniques developed in circle detection by the Hough
transform can be found in [1 1].

Since the rediscovery of the Hough transform [12], a major advance was using gradient to reduce the complexity,
The gradient of an image point indicates the relevant range of parameters to accumulate, so it can also increase the
accuracy. The high order and separable Sobel operator [13] can estinlate the gradient accurately and efficiently. In the
circle detection, parameters for the center are first accumulated and the peaks (the cen~er candidates) are detected in
this 2-dimensional parameter space (The high order Laplacian filter can be used to enhance the peaks). Then radii
for each center are histogrammed and the peaks (the radii candidates) are detected in the l-dimensional array.

One important class of features commonly found on the celestial bodies is tbe crater which appears to be circular
along the edge for a view directly above. Hough transform could be a useful technique capable of detecting multiple
craters simultaneously. Figure 5 shows a distant image of Mima.s (moon of Saturn) where a large crater appears on
its surface. The Hough transform for circle detection was applied to this image, and the crater and the limb of Mimas
were detected successfully as shown in Figure 6.

Hough transform has also been extended to detect ellipses, and even arbitrary shapes [14] which can potentially be
applied to detect other interesting celestial features such as ridges, rivers, and Jupiter’s red spot.

I 3.2 Feature tracking by correlation

Correlation is a straightforward method for template matching. But it is sensitive to size, orientation and lighting,
The lighting problem can be reduced by subtracting the average; this leads to the following formulation

where I(i, j) is the image pixel values and ‘T(i, j) is the template pixel values. The largest coefficient ~(z, y) corresponds
to the best match to the template in the image. Correlation tnay be more efficiently carried out in the frequency domain
via FFT, especially for large template [2].

The correlation technique is known to be sensitive to noises and scale/perspective variation, and, computationally
‘intensive [1,13]. Nevertheless, it could still be effective if it is used properly. As an example, correlation tracking was
applied successfully to a sequence of 4 Jupiter’s images selected from Voyager’s image library where the tracked feature

6

is a closed contour appeared on the Jupiter. The results are shown in Figure 7 through 10. It is our conjecture that
the correlation would work well for local feature tracking if the time between image frames IS relative short, and hence,
the typical problems associated with the correlation method such as scale and perspective changes, can be minimized.
Further study in this area is required.

3.3 Feature tracking by multiple contour matching

In [16], an alternative method for feature tracking was proposed where tracking of planetary surface terrains is done
by recognizing the pattern in “feature constellations”. The fundan~ental concept of this method is similar to those
employed in recognizing the pattern among star constellations in star identification and tracking problems.

To implement such an approach, closed contours need to be detected first. The procedure for contour detection is
well-known [2]. For example, one can first remove the undesired noise and background from the raw image using
median filtering. The gradient-based edge detection technique such as Sobel filtering can then be used to detect
candidate boundary points which can be further reduced by edge thinning to simplify the detection of closed-contours.
The scheme of surrounding-edge contour detection described in [1] can then be applied to detect all possible closed
contours within the same image. These contours are then cataloged to provide a reference for the subsequent image
frame. When a new image frame is acquired, closed-contours are detected and listed. Finally, pattern matching using
relative distance and individual characteristics (e.g., edge strength, enclosed area, etc.) can then be performed to
identify the best match.

To demonstrate the femibility of this approach, two different close-up images of Jupiter surface are selected from
Voyager’s library as shown in Figure 11 and 12. The detected closed-contours in each image are highlighted respectively.
As a result of this proposed approach, a pattern with multiple features (contours) was matched successfully. Although
it is still very preliminary, the test results are very encouraging. It is our belief that this novel approach will have
great potentials in the area of feature tracking.

4. AUTONOMOUS TRACKING AND POINTING DEMONSTRATION

To demonstrate our approach towards the realization of intelligent autonomous tracking and pointing systems, a
3D graphics software testbed has been developed by the AFAST project at JPL. ~’his testbed not only allows us to
validate our algorithmic design using the dynamic scenes generated by the graphics functions, but also provides a great
visualization tool to simulate the likely scenario of autonomous tracking and pointing operations during a planetary
flyby mission. Specifically, a simulated Pluto flyby scenario [17] has been implemented to illustrate the capabilities of
the proposed intelligent autonomous tracking system.

The demonstration is implemented in a distributed simulation envirorlment consisting of two processes, the visualization
software, and the tracking software. In the following, we will describe each of the two software modules and the
interaction between thcxw two modules.

4.1 Visualization system overview

The AFAST visualization software runs on a Silicon Graphics high speed graphics workstation (IRIS Crimson, VGXT)
and utilizes the built-in graphics hardware of the workstation to perform the realistic texture mapping, lighting,
shading and general graphics transformations needed to generate the realism required for this demonstration.

The software is a completely event-driven system that was desigried using an object-oriented paradigm and was
implemented in C++ and SGI/GL~M. The system was designed to be used as a general visualization tool and is not
specific for the AFAST project. To achieve this generality, the software is completely data-driven. Ephemeris data,
view port size and location, spacecraft and planet models, and spacecraft trajectory information are described in a
configuration file that is parsed by the software at run-time. In addition, the user can easily reconfigure the viewing

“ 7

. .

“=’’--+ Y“’y’+$ “

location, line-of-sight vector, and field-of-view (FOV). The correspo[iding scene can be placed at any desired location
with the chosen size on the graphic console. Here the vjewer can be used in a very general sense which could be the
user sitting in front of the display and/or any sensing instrument (such as imaging camera and star tracker) located on
the spacecraft. Currently, the only way to change viewing informatic)n is through the modification of the configuration
file. However, a Graphical User Interface (GUI) will be implemented in the future

4.2 Tracking software

The tracking software module wu designed to perform the required image data process autonomously, that is, no
user-input parameters is allowed. For example, the algorithms must find the threshold value automatically before
boundary points are extracted from the image. This has been a major driver in the process of selection, modification,
and implementation of processing algorithms.

There are several major elements in the current tracking scjftware which can be easily expanded.

1. Searching:
Initially, the target must be acquired through search due to the uncertainty in the knowledge of its location. The
searching operation essentially is the mosaicking of sky in a restricted area governed by the target’s positional
uncertainty. The mosaic size is determined then by the sensor’s field-of-view (jov), the size of search area, and
the overlap between search windows. Assume that the”uncertainty u is the same in both z and y direction of the
sensor coordinate frame, the number of search window is determined by

.= .5-?
l–a

where a is the overlap as a fraction of fov. The clustering technique discussed in Section 2.2 can then used to
detect the target(s). The search terminates when the object is detected.

2. Tracking:

If more than one significant target is detected, each object is fitted to a circle and their geometric center is tracked.
For example, if two bodies are detected, the point (zt, yt) is tracked where Zt = Zl+w , yc = yl+w,

8’and {(~i, yi), ri} (i = 1, 2) are the estimated circle center and its corresponding ra lUS, respectively. As the
spacecraft approaching the targets, all the objects will no longer be observed within the same FOV, In choosing
the tracking point this way, the larger body will alway be presented in the sensor’s FOV. Of course, the tracking
point can be varied depending on the mission design.

Once the smaller body is moved out of the field of view. The center of the larger body is tracked and the radius is
monitored. When the radius becomes larger than certain pre-specified value (60’%0 of the FOV), it is necessary to
track the limb in order to continuously obtain an accurate. estitnation of the. center “(z,, ye)” and the radius “r”
of the target. Since the terminator is very typical phenomenon in the planetary mission, one should be carefully
in choosing the proper limb for tracking. for example, if the lower left limb is tracked,

r
Zt=zc —-,

2
yt z, y= + ;

can be used as the tracking point. A better approach would attempt to capture the longest limb possible. It
requires that the limb passes through the two opposite vertices of the image window. Then the tracking point
for this case is determined by

where h ==
m

w is FOV in pixels. Another choice is to track the intersection of the circular limb and

the diagonal of the image window can be tracked. The tracking point (Z1, yt) for this case is determined by the

8

or

(zt-xC)2+ (yi-yC)2=r2, .r, +y, =w.

3. Mosaicking:

When the radius of the target reaches certain pre-specified threshold value of the sensor’s FOV, a certain size of
mosaic is carried out autonomously. The tracking center is determined by

Zt = xc + rn=(r + 6r)(l - fowerlap) ! w = u. + w(r +- ~r)(l - foverbp)

where m= and my are the location of the mosaic window with respect to the center of the planet, 6r is the radius
change from the previous estimation and \~”~AaP is the overlap between mosaic window as a fraction of FOV. In
case of 3x3 mosaic, 80V0 of the FOV is used as the threshold vaiue to trigger the mosaic sequence. Ideally, this
threshold value can be optimized for a given mosaic size. For a 3x3 mosaic, only the frame in the center captures
no limb, so no information about the center and radius is available and it simply uses information propagated
from the previous estimation. If feature detection and tracking capability is added, a more precise mosaic is
possible and it is very desirable if the size of mosaic is large.

By processing the image, the desired tracking pointing (zt, yt) (e.g., center-of-mass, or limb) on the image plane is
estimated. The offset of the tracking point from the center of the image plane has to be computed in terms of rotation
angles. B~ed on the image, only rotation angle about x and y can be approximated by

(the boresight is along the z-axis), where w and h is the image width and height, respectively. Furthermore, an
additional correction due to compensate spacecraft’s motion is also estimated and combined with the correction from
the image.

4,3 Integration of visualization and tracking software

To perform the various tracking functions described previously, the visualization software must communicate with the
tracking software to properly orient the spacecraft during the simulation of the entire flyby. During the execution
of the simulation, the tracking software continually prompts the visualization software for current views through the
simulated sensor (such as the imaging camera). Whenever a new view is requested, the visualization software .saves
the current image as defined by the sen$or’s FOV to a buffer and subsequently sends the contents of that buffer, via
custom TCP/IP messaging software, to the tracking software. The tracking software will then process the image using
the algorithms in the tracking software to compute the required correction in spacecraft orientation in order to achieve
the desired pointing direction for the sensor. This information is then sent back to the visualization software. The
requested correction in spacecraft orientation is then executed, and a new scene is generated.

Since the operation of the tracking and visualization software is tightly coupled, both processes must be synchronized to
assure that the information provided by the tracking software can orient the spacecraft correctly. This synchronization
is achieved via timing messages sent from the tracking software to the visualization software. In this way, the tracking
software controls the movement of simulation time, and could conceivably run the simulation backwards if that were
desired.

9

Note that only the visualization software needs to be hosted on the graphics workstation, the tracking software can
be running either on the same CPU or on a different CPI;. For thr latter case, the additional CPLT could be either

the second processor on the same workstation or another wor!istatic)n. Hence, the simulation process can be speeded
significantly.

4.4 I)ernonstration – P l u t o f l y b y e x a m p l e

This demonstration shows our capabilities in multiple-body searching/detection/tracking,
tracking, and autonomous mosaicking in a simulated Pluto flyby environment. One key
is the FOV of the imaging camera which is specified in the configuration file. With a

center-of-mass tracking, limb
parameter in this simulation
given set of trajectory data,

multiple bodies may not be observed in the same image if the FOV is small. On the other hand, mosaicking may not
be necessary if the FOV is large. For this demonstration, a 3 degrees by 3 degrees FOV is used in order to show all
the capabilities mentioned above.

Initially, the spacecraft is located approximately 660,000 Km away from pluto (11 hOUrS before the CIOSeSt encounter
to Pluto) and the velocity vector of the spacecraft is assumed knowIL. At this distance and the closeness of Pluto and
its moon - Charon, both bodies can be observed within the FOV. However, due to the uncertainty in the positional
knowledge of the Pluto-Charon system, the spacecraft will turn and search a specific area governed by the uncertainty
in order to detect the desired targets. Once they are detected, = the spacecraft approaching Pluto, tracking of the
two bodies will be carried out continuously until both Pluto and Charon will no longer fit into the same FOV Under
this circumstance, tracking of the center-of-mass of the larger body (Pluto) is exercised.

When the estimated image diameter of the planet is greater than camera FOV, limb tracking is carried out. This will
allow the on-board image processing algorithms to estimate and update the center of mass location and the radius
continuously.

Finally, when the estimated image diameter of the planet exceeds a preset threshold, a 3x3 mosaic is performed
automatically (Note that the size of mosaic can be changed based on the mission dmign). After mosaicking, limb
tracking will continue. The simulation ends approximately one half hour after closest encounter.

All the key steps of this simulation were summarized in Figure 13, and a video derr~onstration of the entire simulation
will also be presented.

5 . C O N C L U S I O N A N D FIJTURE W O R K

The feature-based pointing technology proposed in [1] will be one of the major co[ltributors to achieving the goals of
the new NASA directive: to provide space missions that are low-cost, innovative, versatile, and yield the maximum
science return. With the advances in image processing and computer vision, the realization of robust, autonomous
image-based tracking and poin~ing technology on spacecraft systems can be considered u a real possibility. In this
paper, our work in achieving such a goal is reported. Our approach to the realization of an intelligent autonomous

I
image-based poin iyg and tracking system was also demonstrated successfully. Specifically, a 3D graphics package was
developed and a planetary flyby example wm implemented to show our capabilities in searching/detecting, tracking,
and autonomous mosaicking of spherical bodies.

For our future plan in the near term, a natural step is to extend the work in this paper to the acquisition, tracking, and
mosaicking of the irregular-shaped bodies such as asteroids and cornets. Another related area in autonomous tracking
and pointing operations is surface feature detection and tracking which is crucial in a close-up operation when no limb
information is available. Although some preliminary results were reported in this paper, more research efforts need to
be carried out in this area.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Mr. Mark Garcia and .Mr. James Duke for their assistance in
providing data for the graphics demonstration. This research was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

1.

2.

3.

4.

5<

6.

7.

.8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

S. Udomkesmrilee, G.E. Se=ston, and R. II. Stanton, “Toward an autonomous featurebased pointing system for
planetary missions”, SPIE Vol. 1949, Space Guidance, Control, and Tkacking, 1993.

R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison-Wesley, 1992.

T.S. Huang, G.T. Yang, and G.Y. Tang, “A fast two-dimensicmal median filtering algorithm,” IEEE Trans. o n
ASSP, Vol. ASSP-27, No. 1, February,1979, pp. 13-18.

M.I. Sezan, “A peak detection algorithm and its application to histogram-based image data reduction,” CVGIP,
49, 1990, pp. 36-51.

J .S. Weszka, R.N. Nagel, and A. Rosen feld, “A threshold selection technique,” IEEE Trans. On Compuier, 23,
1974, pp. 1322-1326.

L.J, van Vliet, I.T. Young, and G.L. Beckers, “A nonlinear Laplace Qperator as edge detector in noisy images,”
CVGIP, 45, 1989, 167-195.

A. Rosenfeld and A.Y. Wu, “Digital geometry on graphs,” Contemporary Mathematics, Volume 119, 1991, pp..
1 2 9 - 1 3 6 .

S.M. Thomas and Y.T. Chan, “A simple approach for the estimation of circular arc center and its radius,”
Computer Graphics Image Processing, 45, 1989, pp. 362-370.

A. Albano, “Representation of digitized contours in terms of conic arcs arid straight line” segments,” Computer
Graphics Image Processing, 3, 1973, pp. 23-33.

R.N. Dave, “Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries,” Pattern
Recognition, 25, 1992, 713-721.

P, Kierkegaard, “A method for detection of circular arcs based on the Hougb transform,” Machine Vision and
Applications, No. 5, 1992, pp. 249-263.

R.O. Duda and P.E. EIart, “Use of the Hough transform to detect lines and curves in pictures,” Communication
ACM, Vol. 15, No. 1, 1972, pp. 11-15.

P.E. Danielson and O. Seger, “Generalized and separable Sobel operators,” 1[. Freeman (cd), Machine Vision-
Acquiring And Inte~rwting The tlD Scene, Academic Press, New York, 1989, pp. 347-379.

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, Vol. 13, No.
2, 1981, pp. 111-122.

E.L. Hall, Computer Image Processing and Recognition, Academic Press, 1979.

C.C. Liebe, “A new strategy for tracking planetary terrains,” SPIE, Paper No.. 2221-68, (this proceeding), April
5-8, 1994.

R.L. Staehle, J .B. Carraway, C.G. Salvo, R.J. Terrile, S.S. Weinstein, and E. Hansen, “Exploration of Pluto:
search for applicable satellite technology,” Sixth Annual AIAA/Uiah Staie University Conference on Srna[l Satel-
lites, I,ogan, Utah, September, 1992.

1 1

*

.

Fig\lre 3: C’irc\e-fit of >[iranda

Fig{lre 2: 5s.5 rl]~(iian filtering

l’igllre 4: ~llipse-fit of \[iranda

F’igl\I,. G (’LT II!:l.r f,,:i:ilr~ ,!,(,,(’:10[1 00 \lin nas

12

r

1

,

Figure 7: Correlation feature tracking - frame //1

,,,.

Figure 9: Correlation feature trackin: - frame #3

igl~re 8: Correlation fefiturc tracking - frame #2

F i :Ilre .10: Correlation feature tracking - frame #4

13

Figllrc 13: Aut.ononIoIIs tracking and pointing demollstratio;l: l’lllto [Iyl)y (! XJIII[)IC

